
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO, 9, SEPTEMBER 1993 1601

Full-Wave Analysis of Discontinuities in

Conductor-Backed Coplanar Waveguides

Using the Method of Lines
Shyh-Jong Chung, Member, IEEE, and Tun-Ruey Chrang

Abstract— A three-dimensional analysis using the method of

lines with nonequidistant discretization is described to investigate
the discontinuities in shielded conductor-backed coplanar wave-
guides (CBCPW’S). An extended approach concerning the treat-

ment of the boundary conditions at the input and output ports

is proposed in which the reflection and transmission coefficients
can be directively obtained in a single calculation. The validity

and convergence of the numerical results are checked and gaps
with various shapes in CBCPW’S are analyzed and compared.
Finally, the frequency response of a simple step discontinuity is

calculated as an application to unsymmetrical structure.

I. INTRODUCTION

c OPLANAR waveguides (CPW’S) possess several advan-

tages over the conventional microstrip lines for mono-

lithic or hybrid MIC applications. First, the characteristic

impedance is primarily determined by the ratio of slot width

and the center conductor, so size reduction is possible with-

out limit. Second, they are virtually nondispersive and the

radiation caused by discontinuities is reduced greatly. For

open-circuited microstrip and CPW with similar sizes, the

radiation loss of the latter is 20 to 40 dB less than that

of the former [1]. Third, active devices can be easily inserted to

the lines without using the via-hole technique. This simplifies

the fabrication process and eliminates the inductions caused

by the via holes. Fourth, it is easy to make transitions from

CPW to other transmission lines, which makes for more

flexibility in the design of circuits [2].

Several authors have paid their attentions to the analyses

of the dispersion and impedance characteristics of coplanar

waveguides, e.g., [3] – [6], but only a few tackle the discontinu-

ity problems [7] – [1 1]. Naghed and I. WQlff [7] calculated the

equivalent capacitance of coplanar waveguide discontinuities

using the static finite difference method. Simons and Ponchack

[8] Qbtained the equivalent circuit models by experiments.

Among the full-wave analyses, Kuo and Itoh [9] applied the

mQde-matching technique to characterize the step junctirms of

shielded coplanar waveguides. Jackson [10] used the integral

equation technique, with electric current bases, to consider the

mode conversion at the open end of a finite-width conductor-

back coplanar waveguide. By using the same technique, but
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with the bases of equivalent magnetic currents in the slots,

Drissi et al. [11] analyzed the equivalent resistance and reac-

tance of a CPW short end.

In this paper, we develop a Fortran program to study

the discontinuities in the shielded conductor-backed coplanar

waveguides using the method lines [12]. This method is

well suited for analyzing three-dimensional resonators and

periodic structures [13], [14]. But for the calculaticm of scat-

tering parameters, additional treatment must be handled in

the boundary conditions associated with the input and output

ports. Worm [15] tackled the microstrip discontinuities by

introducing inhomogeneous boundary conditions to the input

port and assuming a short or an open circuit at the output port

to obtain a homogeneous boundary cmditim. In his approach,

three calculations of matrix equations were needed to obtain

the whole scattering parameters. Chen and Gao [16] as well

as Wu et al. [17] considered the same discontinuity problem,

using hybrid boundary conditions. In the first case the incident

and excited waves were tackled individually and in the second

case only the reflection coefficient (S11 ) was shown.

In the present analysis we use the inhomogeneous boundary

conditions but treat the reflection and transmission coefficients

as unknowns. Two more equations are searched and added to

the matrix equation obtained by the conventional procedure of

the method of lines. The reflection and transmission coefficient

are directively obtained from a Gaussian elimination without

backsubstitution.

II. FORMULATION

Fig. 1 shows a discontinuity structure in the transition of two

shielded conductor-backed coplanar waveguides. The wave-

guides are assumed to be single-moded and extend uniformly

to infinity in the +x and – z directions, respectively. Let a

wave (odd mode) propagate toward the discontinuity from
~ = —~, some of the power is reflected back to z = —co,

and the other transmitted to z = co, both carried by the single

propagation modes of the waveguides. Near the transition

region higher order modes are excited, but vanish at the places

far from the discontinuity. By considering the symmetries in

the x direction of the structure and the incidence condition,

one may put a perfect magnetic conductor (PMC) at the plane

of x = A, and thus reduce the solving space to the half region

ofx>A.
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Fig. 1. Discontinuity in shielded conductor-backed coplanar waveguides.
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Nonequidistant discretization in reduced solving region.

The two independent field components Ez and Hz in each

separate layer shown in Fig. 1 should satisfy the Helmholtz

equation

( )g+~+g+kz V“o@/2
(1)

where W stands for either Ez or Hz, and k2 = lc~ (upper

layer) or c.k~ (lower layer).

By the method of lines [12], the fields are discretized in

the x and .z directions and evaluated on the e-lines (for E=
component) and h-lines (for H. component). Fig. 2 shows

the locations of these lines in the reduced half space (Az <
2A, O < z < 1). It is noticed that the lines are made denser in

the discontinuity region to consider the large variation of the

field. At the input port (z = O) and the output port (z = 1),

the excited higher order modes are assumed to vanish so that

only the dominant modes exist. This is also assumed to hold

at the planes of z = hzl and z = 1– hzN shown in Fig. 2.

The boundary conditions at the input port (z = O) are

EJZ=O = (1 – R)eZ, (2)

8HZ

82 ~=~
= –j/?t (1 – R)hz, (3)

and at the output port (z = 1) are

E& = Te,. (4)

(5)

where e2i(eZO), h,~(hzo), and ~,(/30) are the modal fields

and the propagation constant of the input (output) coplanar

waveguide, which are calculated by the method of lines with

one-dimensional discretization. R and T are the unknown

voltage reflection coefficient and transmission coefficient, re-

spectively.

Based on the boundary condition (2)–(5) and following

procedures similar to [12] and [15], one may obtain the finite

difference expression for the derivations of Ez and H. with

respect to ,2 as follows;

h 8E.
z= ~ (rzh~.r-’8 Iz)Ez + T(r2h 8 I.)Ezoz

– (1 – R~~r2h @~.)E.i (6)

h 8HZ
— ~ - (rzeDzrj~ @I.)HZ

‘ 82
(7)

hz 82E
~~ -+ –6&z&1Ez – T(rze~tz~zh @IZ)EZO

+ (1– R) (r..~t,r.~ 8 I.) E,, (8)

h2132HZ
~-jjJ- ~ –bh~zhb; lH. + T(rth @~.)~~.

- (1 - l?)(r~h @Iz).H~i (9)

where the vectors E, and HZ are the sampled values of E.
and Hz on the e-lines and h-lines, respectively, which are,.
unknowns; @ denotes the Kronecker products; be = rz~ @rze,

& = rzh @ rzh; rze(rze) and rzh(rzk) are diagonal ma-

trices associated with the nonequidistant discretization in the

z(x) direction, both turning into unit matrices for equidistant

discretization [12] [15]; and

with O being the zero vector and

D= =

1

–1 ““.

“. “.. .

[

. . 1

–1

(lo)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

The finite difference expressions for the derivatives of Ez
and H. with respect to z’ are Jhe same as those in [:5]. By

the transformations ~.z = T~b; 1Ez and ~n, = T~b~ 1Hz,

one can transfer (1) to uncoupled differential equations:
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.(rz, ~ T;:) {TH:O -(1 - R)H:,} (19)

where ~h and T. denote the normalized eigenvector matrices

Of Pzk and Pze, and ‘?h and ~~~ denote their eigenvalue
(quasi-) diagonal matrices, respectively. h~h and A:. are the

counterparts of A:h and J&e in the x direction.

By casting the solutions of (18) and (19) into the Maxwell’s

equations to obtain the other tangential field components, and

employing the boundary condition at the interface of the two

layers, one gets an inhomogeneous matrix equation in the

transformed domain. This equation is then transformed back

to the spatial domain to get

[i] “[:] ‘(1

[

E
– TYO “0

E,O
(20)

After taking into account that the currents (tangential electric

fields) vanish on the slot (conductor) region, a reduced matrix

equation is obtained:

‘“[%1 S10,+RY’[5:I-TY’[%:I ‘YE]
(21)

If we assume that the numbers of e-lines and h-lines on

the slot region are iV. and ~h, respectively, then there will

be ~. + ~h linear equations in (21) but with ~, + ~~ + 2

unknowns. (Remember that R and T are treated as unknowns.)

To obtain two additional equations we consider the currents at

the planes of z = hzl and .2 = 1– hzN. At these planes

J, I.=L, = (e–ifl,hz, _ Re3~th )jzi (22)

J~l~=l–k,N = Te~flOhzNjzO (23)

where jzi and jZO are the z-directed modal currents of the

input and output CPW’S modes, respectively.

With (22) and (23), we may get two more sets of equations

from (20): one corresponds to the currents at the plane of
z = hZl, the other to those of z = 1 – hzN. By averaging

these two sets of equations individually, the required two

equations are obtained. These equations together with (21)

form a square matrix equations, which are then solved by the

method of Gaussian elimination without backsubstitution to

get the reflection coefficient R and transmission coefficient T.

III. NUMERICAL RESULTS

In this section we present some numerical results derived

form the above formulation. The structure parameters are
chosen as A = B = 1.778 mm, d = 0.254 mm, e, = 9.7,

1.

-0.2 -

- -0.4 -

zL

< -0.6 -

-0.8 -

\

s(ope = -0.835
rad./mm

I , , , 1

0 0.2 0.4 0.6 0.8 ‘

[ (mm)

Fig. 3. Phase of the transmission coefficient as a function of the distance (1)

between input and output ports. ~ = 15 GHz, /3, = /30 = 0.835 rad/mm.

w~ = W. = 0.4 mm, and s~ = so = 0.1 mm. For the

nonequidistant discretization, there are Ns e-lines and N. + 1

h-lines placed across the slot in the x direction, and Ng e-lines

and Ng + ljzi h-lines across the gap in the z direction, both

with a constant subinterval between any two adjacent e- and h-
lines. For lines outside the slot (in the x direction) and the gap

(in the z direction), this subinterval increases as geometrical

series with the quotient q of successive subintervals being a

constant. (q equals 1.2, except for the lines in the x direction

between the slot edge and the PMC, where q equals 1.1.)

As a numerical check, Fig. 3 illustrates the variation of the

phase delay from the input port to the output port for a through

CPW, as a function of the distance between the two ports.

Although not shown here, the magnitude of the transmission

coefficient T is always calculated to 1, and that of the reflection

coefficient R calculated to O (both exact to five digits). It

is noticed that the results form a line with a slope equal to

0.835 rad/mm, which is exactly the same as the propagation

constant ,Bof the incident mode. This verifies the validity of the

programming and the treatment of the source-based boundary

conditions.

The convergence behavior of the reflection coefficient as

a function of the interval size in the gap region is shown in

Fig. 4. Here P= is fixed to 0.25 and h. = 0.7 hz. It can be

seen that both of the curves converge to the same value as

the interval size decreases. The curve of P. = 0.25 enters

the 0.5% precision region at h. = 16 ~m, where Ns = 9 and

N~ = 2. In the following calculations, we set P. = P. = 0.25,
N, = 10, and the ratio of h, /hz is appropriately chosen from

0.5 to 1.5 according to the gap width considered.

For a gap discontinuity shown in the inset, Fig. 5 displays

the variations of the reflection coefficient R and transmission

coefficient T as a function of the gap width g. When g = O,

the gap vanishes, and all the power is transmitted to the

output port (1R\ = O, [Tl = 1). As g increases, the gap

begins to reflect the power. The larger the gap is, the more

power is reflected back. Only about 1!20 of the power is

transmitted when the widths of the gap and slot become equal

(g = 0.1 mm). Notice that h makes little influence on the

reflection and transmission coefficients for the range (of h)
considered. In all the calculations, IRI 2+ IT 12are always equal
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Fig. 4. Convergence behavior of the reflection coefficient as a function of
the interval size in the gap region (h, ) and the edge parameter ( Pz ). Gap

with g = 0.04 mm. P, = 0.25, hz = 0.7 It.. f = 15 GHz.
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Fig. 5. Scattering parameters of gap discontirmities as a fanction of the gap
width (g). ~ = 15 GHz.

to 1, which means that power is conserved. Actually, in our

formulation the power conservation is satisfied no matter what

the discontinuity is and how rough the discretization has been

made.

Fig. 6 shows the frequency dependence of the reflection and

transmission coefficients for the same structure as in Fig. 5. At

low frequency, the quasi-static incident field sees an opened

circuit at the gap, thus almost all the power is reflected back.

But as the frequency increases, the wave begins to tunnel the

gap, which makes more power transmitted to the output port.

The scattering characteristics of two closely spaced CPW

step dis~ontinuities are illustrated in Fig. 7. This configuration

may be considered as a gap with a thin conductor connect-

ing the center conductors of the input and output coplanar

waveguides. Comparisons can be made between Figs. 7 and

5. When the gap width g approaches O, as expected, all the

incident powers of both structures are transmitted to the output

ports. But, due to the existence of the connecting conductor,

the transmitted power in Fig. 7 remains high as g increases,

which is in contrast to those in Fig. 5. For the same structure,

Fig. 8 displays the variations of the reflection and transmission

coefficients as a function of the gap depth h. It is seen that,

although increased with the gap depth, the reflection power is

less than 1% of the incident power even when the width of

f (GHz)

Fig. 6. Frequency dependence of the scattering parameters of gap disconti-
nuities. ~ = 15 GHz.

1

ITI

9 (mm)

Fig. 7. Scattering parameters of two closely spaced step discontinuities as a
function of the distance (g) between the two steps. ~ = 15 GHz.

the connecting conductor shrinks to one fourth of that of the

CPW’S center conductor.

As an application to the unsymmetrical structure, Fig. 9

shows the frequency responses of the reflection and transmis-

sion coefficients of a step discontinuity. For each frequency

considered, both the reflection and transmission coefficients

are obtained in a single calculation.

IV. CONCLUSIONS

The method of lines with two-dimensional nonequidistant

discretization has been used to analyze the discontinuities

in the conductor-backed coplanar waveguides. An extended

approach concerning the treatment of the boundary conditions

at the input and output ports is proposed. In this approach,

the reflection and transmission coefficients are tasted into

the system equations as unknowns. Two additional equations

have been found from the current distributions near the two

ports. The scattering coefficients are obtained directively from

a Gaussian elimination without backsubstitution. The validity

of the method has been verified. Numerical results for CPW

gaps with and without stubs and for two closely spaced CPW

step discontinuities have been analyzed and compared.

In the programming of the formulation, a subroutine named

“MASK’ is developed to characterize the pattern of the metal

(solt) in the metal plane. For tackling different discontinuity
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of a stepdiscontinuity.

problems, one only need to revise “MASK.” This greatly

reduces the analysis effort. By the present treatment of the

boundary conditions, it is possible to deal with discontinuities

in a multimode shielded CPW, and this will be handled in

the near future.
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