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Full-Wave Analysis of Discontinuities in
Conductor-Backed Coplanar Waveguides
Using the Method of Lines

Shyh-Jong Chung, Member, IEEE, and Tun-Ruey Chrang

Abstract— A three-dimensional analysis using the method of
lines with nonequidistant discretization is described to investigate
the discontinuities in shielded conductor-backed coplanar wave-
guides (CBCPW’s). An extended approach concerning the treat-
ment of the boundary conditions at the input and output ports
is proposed in which the reflection and transmission coefficients
can be directively obtained in a single calculation. The validity
and convergence of the numerical resuits are checked and gaps
with various shapes in CBCPW’s are analyzed and compared.
Finally, the frequency response of a simple step discontinuity is
calculated as an application to unsymmetrical structure.

I. INTRODUCTION

OPLANAR waveguides (CPW’s) possess several advan-

tages over the conventional microstrip lines for mono-
lithic or hybrid MIC applications. First, the characteristic
impedance is primarily determined by the ratio of slot width
and the center conductor, so size reduction is possible with-
out limit. Second, they are virtually nondispersive and the
radiation caused by discontinuities is reduced greatly. For
open-circuited microstrip and CPW with similar sizes, the
radiation loss of the latter is 20 to 40 dB less than that
of the former [1]. Third, active devices can be easily inserted to
the lines without using the via-hole technique. This simplifies
the fabrication process and eliminates the inductions caused
by the via holes. Fourth, it is easy to make transitions from
CPW to other transmission lines, which makes for more
flexibility in the design of circuits [2].

Several authors have paid their attentions to the analyses
of the dispersion and impedance characteristics of coplanar
waveguides, e.g., [3]—[6], but only a few tackle the discontinu-
ity problems [7]—[11]. Naghed and 1. Wolff [7] calculated the
equivalent capacitance of coplanar waveguide discontinuities
using the static finite difference method. Simons and Ponchack
[8] obtained the equivalent circuit models by experiments.
Among the full-wave analyses, Kuo and Itoh [9] applied the
mode-matching technique to characterize the step junctions of
shielded coplanar waveguides. Jackson [10] used the integral
equation technique, with electric current bases, to consider the
mode conversion at the open end of a finite-width conductor-
back coplanar waveguide. By using the same technique, but
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with the bases of equivalent magnetic currents in the slots,
Drissi et al. [11] analyzed the equivalent resistance and reac-
tance of a CPW short end.

In this paper, we develop a Fortran program to study
the discontinuities in the shielded conductor-backed coplanar
waveguides using the method lines [12]. This method is
well suited for analyzing three-dimensional resonators and
periodic structures [13], [14]. But for the calculation of scat-
tering parameters, additional treatment must be handled in
the boundary conditions associated with the input and output
ports. Worm [15] tackled the microstrip discontinuities by
introducing inhomogeneous boundary conditions to the input
port and assuming a short or an open circuit at the output port
to obtain a homogeneous boundary condition. In his approach,
three calculations of matrix equations were needed to obtain
the whole scattering parameters. Chen and Gao [16] as well
as Wu et al. [17] considered the same discontinuity problem,
using hybrid boundary conditions. In the first case the incident
and excited waves were tackled individually and in the second
case only the reflection coefficient (S11) was shown.

In the present analysis we use the inhomogeneous boundary
conditions but treat the reflection and transmission coefficients
as unknowns. Two more equations are searched and added to
the matrix equation obtained by the conventional procedure of
the method of lines. The reflection and transmission coefficient
are directively obtained from a Gaussian elimination without
backsubstitution.

II. FORMULATION

Fig. 1 shows a discontinuity structure in the transition of two
shielded conductor-backed coplanar waveguides. The wave-
guides are assumed to be single-moded and extend uniformly
to infinity in the +z and —z directions, respectively. Let a
wave (odd mode) propagate toward the discontinuity from
z = —oo, some of the power is reflected back to z = —oo,
and the other transmitted to z = oo, both carried by the single
propagation modes of the waveguides. Near the ftransition
region higher order modes are excited, but vanish at the places
far from the discontinuity. By considering the symmetries in
the z direction of the structure and the incidence condition,
one may put a perfect magnetic conductor (PMC) at the plane
of x = A, and thus reduce the solving space to the half region
of z > A
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Fig. 1. Discontinuity in shielded conductor-backed coplanar waveguides.
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Fig. 2. Nonequidistant discretization in reduced solving region.

The two independent field components E, and H, in each
separate layer shown in Fig. 1 should satisfy the Helmholtz
equation

o? o? 0? 3
(8x2+8y +822+k)\11—0 6]
where U stands for either E, or I, and k2 = k2 (upper
layer) or €.k (lower layer).

By the method of lines [12], the fields are discretized in
the = and z directions and evaluated on the e-lines (for E,
component) and h-lines (for H, component). Fig. 2 shows
the locations of these lines in the reduced half space (Az <
24, 0 < z < ). It is noticed that the lines are made denser in
the discontinuity region to consider the large variation of the
field. At the input port (z = 0) and the output port (z = 1),
the excited higher order modes are assumed to vanish so that
only the dominant modes exist. This is also assumed to hold
at the planes of z = h,y and 2z = [ — h, shown in Fig. 2.

The boundary conditions at the input port (z = 0) are

E).—0 = (1 - R)e,, (2
OH, )

9z —o - _.7/81(1 - R)hzz (3)

and at the output port (z =) are
Ez|z=l =Teso @

OH, .
=—30,Ths 5
3 |, 3B ®)
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where €,;(€20), hasi(Pzo), and B,(8,) are the modal fields
and the propagation constant of the input (output) coplanar
waveguide, which are calculated by the method of lines with
one-dimensional discretization. R and 7' are the unknown
voltage reflection coefficient and transmission coefficient, re-
spectively.

Based on the boundary condition (2)—(5) and following
procedures similar to [12] and [15], one may obtain the finite
difference expression for the derivations of £, and H, with
respect to 2z as follows;

hz% - (Tzhﬁzrz_el Y Im)Ez + T("’zh ® Iw)EZO
- (l_R)(T§h®Iw)Ezi (6)
OH, —_
5, _("'zeDz"'zhl ® Iz)Hz (M
2 32Ez D -1 "t
hm 822 - —bePzeb Ez - T(rzeD 2Tzh &® Im)Ezo
+ (1 - R) (""ze z'rzh ®I ) (8)
2

(1—R)( D )H;i ©9)

where the vectors E, and H , are the sampled values of F,
and H, on the e-lines and h-lines, respectively, which are
unknowns; ® denotes the Kronecker products; 136 =12 QTge,
by, = 7. @ Tun: 72e(Tee) and 7,5, (r,;) are diagonal ma-
trices associated with the nonequidistant discretization in the
z(z) direction, both turning into unit matrices for equidistant
discretization [12] [15]; and

1
Ezi = [0:| ®ezz (10)
0
Ezo = {:I:I ® e (11)
1 . 1
Hi==jBi| o | ®hai (12
H, = —gﬂo[ |on, (13)
P,.=D!D.®I, (14)
P, =DD!xI, (15)
E = Tthz"'ze (16)
with O being the zero vector and
1
-1
D, = a7
1
-1

The finite difference expressions for the derivatives of E,
and H, with respect to « are the same as those in [15]. By
the transformations E,,, = Ttb7'E, and H,, = Ttb; ' H ,
one can transfer (1) to uncoupled differential equations:
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a2 ™\ 2 TR
- (Dira @r;){TE., — (1- R)E.;} (18)

2 A2 A2 _ R
8E _< ze+ “—kz)Enz=iT§

9% Az, A2 — 1.
—an —| =zt zh _ |2 nz — _Tt

'(rzh R Irw_el) {TH/zo - (1 - R)lez} (19)

where Th and Ci’e denots: the normalized eigenvector matrices
of ch and Pze, and Azh and Age denote their eigenvalue
(quasi-) diagonal matrices, respectively. Aih and Aie are the
counterparts of A2, and A2, in the z direction.

By casting the solutions of (18) and (19) into the Maxwell’s
equations to obtain the other tangential field components, and
employing the boundary condition at the interface of the two
layers, one gets an inhomogeneous matrix equation in the
transformed domain. This equation is then transformed back
to the spatial domain to get

=] e-mr )

B, (20)

-1y, |
After taking into account that the currents (tangential electric
fields) vanish on the slot (conductor) region, a reduced matrix
equation is obtained:

Ez Ezi Eza Eazz
Y +Rw[ }—TW[ ]:yﬂ ].
l: Z] slot ’ Ez’i ? EZO Ezz
eay

If we assume that the numbers of e-lines and A-lines on
the slot region are N, and N, respectively, then there will
be N. + Nj, linear equations in (21) but with N, + Nj + 2
unknowns. (Remember that R and T are treated as unknowns.)
To obtain two additional equations we consider the currents at
the planes of z = h,1 and z = [ — h,n. At these planes

lez:hz1 — (C_jﬂthzl — Re]lglhzl)jzi
lez:l—th = TejﬂOhZszo

(22)
(23)

where j,; and j,, are the z-directed modal currents of the
input and output CPW’s modes, respectively.

With (22) and (23), we may get two more sets of equations
from (20): one corresponds to the currents at the plane of
z = h,1, the other to those of z = [ — h,n. By averaging
these two sets of equations individually, the required two
equations are obtained. These equations together with (21)
form a square matrix equations, which are then solved by the
method of Gaussian elimination without backsubstitution to
get the reflection coefficient R and transmission coefficient 7.

III. NUMERICAL RESULTS

In this section we present some numerical results derived
form the above formulation. The structure parameters are
chosen as A = B = 1.778 mm, d = 0.254 mm, ¢, = 9.7,
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Fig. 3. Phase of the transmission coefficient as a function of the distance (1)
between input and output ports. f = 15 GHz, 8, = 8, = 0.835 rad/mm.

w; = We = 04 mm, and s; = s, = 0.1 mm. For the
nonequidistant discretization, there are Ny e-lines and N, + 1
h-lines placed across the siot in the x direction, and N, e-lines
and Ny + 1j,; h-lines across the gap in the z direction, both
with a constant subinterval between any two adjacent e- and h-
lines. For lines outside the slot (in the x direction) and the gap
(in the z direction), this subinterval increases as geometrical
series with the quotient ¢ of successive subintervals being a
constant. (g equals 1.2, except for the lines in the z direction
between the slot edge and the PMC, where ¢ equals 1.1.)

As a numerical check, Fig. 3 illustrates the variation of the
phase delay from the input port to the output port for a through
CPW, as a function of the distance between the two ports.
Although not shown here, the magnitude of the transmission
coefficient T is always calculated to 1, and that of the reflection
coefficient R calculated to O (both exact to five digits). It
is noticed that the results form a line with a slope equal to
0.835 rad/mm, which is exactly the same as the propagation
constant 3 of the incident mode. This verifies the validity of the
programming and the treatment of the source-based boundary
conditions.

The convergence behavior of the reflection coefficient as
a function of the interval size in the gap region is shown in
Fig. 4. Here P, is fixed to 0.25 and h, = 0.7 h,. It can be
seen that both of the curves converge to the same value as
the interval size decreases. The curve of P, = 0.25 enters
the 0.5% precision region at h, = 16 ym, where N, = 9 and
N, = 2. In the following calculations, we set P, = P, = 0.25,
N, = 10, and the ratio of %, /h, is appropriately chosen from
0.5 to 1.5 according to the gap width considered.

For a gap discontinuity shown in the inset, Fig. 5 displays
the variations of the reflection coefficient R and transmission
coefficient T as a function of the gap width g. When g = 0,
the gap vanishes, and all the power is transmitted to the
output port (|R| = 0, |[T| = 1). As g increases, the gap
begins to reflect the power. The larger the gap is, the more
power is reflected back. Only about 1% of the power is
transmitted when the widths of the gap and slot become equal
(g = 0.1 mm). Notice that h makes little influence on the
reflection and transmission coefficients for the range (of h)
considered. In all the calculations, |R|2 + |T|2 are always equal
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Fig. 4. Convergence behavior of the reflection coefficient as a function of
the interval size in the gap region (h;) and the edge parameter (P,). Gap
with ¢ = 0.04 mm. P, = 0.25, h, = 0.7 h,. f = 15 GHz.
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Fig. 5. Scattering parameters of gap discontinuities as a function of the gap
width (g). f = 15 GHz.

to 1, which means that power is conserved. Actually, in our
formulation the power conservation is satisfied no matter what
the discontinuity is and how rough the discretization has been
made.

Fig. 6 shows the frequency dependence of the reflection and
transmission coefficients for the same structure as in Fig. 5. At
low frequency, the quasi-static incident field sees an opened
circuit at the gap, thus almost all the power is reflected back.
But as the frequency increases, the wave begins to tunnel the
gap, which makes more power transmitted to the output port.

The scattering characteristics of two closely spaced CPW
step discontinuities are illustrated in Fig. 7. This configuration
may be considered as a gap with a thin conductor connect-
ing the center conductors of the input and output coplanar
waveguides. Comparisons can be made between Figs. 7 and
5. When the gap width ¢ approaches 0, as expected, all the
incident powers of both structures are transmitted to the output
ports. But, due to the existence of the connecting conductor,
the transmitted power in Fig. 7 remains high as ¢ increases,
which is in contrast to those in Fig. 5. For the same structure,
Fig. 8 displays the variations of the reflection and transmission
coefficients as a function of the gap depth h. It is seen that,
although increased with the gap depth, the reflection power is
less than 1% of the incident power even when the width of
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Fig. 6. Frequency dependence of the scattering parameters of gap disconti-
nuities. f = 15 GHz.
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Fig. 7. Scattering parameters of two closely spaced step discontinuities as a
function of the distance (g) between the two steps. f = 15 GHz.

the connecting conductor shrinks to one fourth of that of the
CPW’s center conductor.

As an application to the unsymmetrical structure, Fig. 9
shows the frequency responses of the reflection and transmis-
sion coefficients of a step discontinuity. For each frequency
considered, both the reflection and transmission coefficients
are obtained in a single calculation.

IV. CONCLUSIONS

The method of lines with two-dimensional nonequidistant
discretization has been used to analyze the discontinuities
in the conductor-backed coplanar waveguides. An extended
approach concerning the treatment of the boundary conditions
at the input and output ports is proposed. In this approach,
the reflection and transmission coefficients are casted into
the system equations as unknowns. Two additional equations
have been found from the current distributions near the two
ports. The scattering coefficients are obtained directively from
a Gaussian elimination without backsubstitution. The validity
of the method has been verified. Numerical results for CPW
gaps with and without stubs and for two closely spaced CPW
step discontinuities have been analyzed and compared.

In the programming of the formulation, a subroutine named
“MASK?” is developed to characterize the pattern of the metal
(solt) in the metal plane. For tackling different discontinuity
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Fig. 9. Frequency dependences of the reflection and transmission coefficients

of a step discontinuity.

problems, one only need to revise “MASK.” This greatly
reduces the analysis effort. By the present treatment of the
boundary conditions, it is possible to deal with discontinuities
in a multimoded shiclded CPW, and thls will be handled in
the near future.

(1

2]
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